Article Details

Main Article Content

Rezki Amalyadi

Transformasi genetik merupakan strategi potensial untuk meningkatkan nilai gizi dan ketahanan tanaman pakan, sehingga memberikan manfaat besar bagi produktivitas ternak dan pertanian berkelanjutan, terutama di negara berkembang dengan keterbatasan kualitas pakan. Artikel ini meninjau penerapan berbagai teknik transformasi genetik, termasuk transformasi yang dimediasi Agrobacterium, biolistik, CRISPR/Cas9, transgenik, dan interferensi RNA (RNAi) dalam perbaikan kualitas nutrisi serta pengurangan faktor anti-gizi pada tanaman pakan utama. Pendekatan yang digunakan adalah tinjauan literatur sistematis terhadap lebih dari 60 publikasi internasional terindeks Scopus, Web of Science, PubMed, dan ScienceDirect pada periode 2000–2025. Seleksi dilakukan berdasarkan kriteria inklusi yang relevan dengan tanaman pakan seperti jagung, kedelai, singkong, dan sorgum. Data dianalisis secara deskriptif-komparatif, dengan peringkasan kuantitatif menggunakan analisis kecenderungan rata-rata dan perbandingan antarspesies. Hasil tinjauan menunjukkan bahwa transformasi genetik mampu meningkatkan kadar asam amino esensial, kandungan energi, serta menurunkan faktor anti-nutrisi pada tanaman pakan. Perubahan ini terbukti meningkatkan performa hewan dan efisiensi konversi pakan dalam berbagai sistem produksi. Namun, adopsi di negara berkembang masih rendah karena kendala biaya, keterbatasan infrastruktur, tantangan regulasi, dan skeptisisme publik. Dengan dukungan kebijakan yang tepat, investasi pada sarana penelitian, serta edukasi masyarakat, transformasi genetik berpotensi menjadi instrumen kunci dalam memperkuat kualitas pakan dan mendukung ketahanan pangan di wilayah dengan sumber daya terbatas melalui pengembangan sistem peternakan yang lebih berkelanjutan.

Keywords: CRISPR/Cas9 Peningkatan nutrisi Produktivitas ternak Tanaman pakan Transformasi genetik

Received: 03 Jul 2025; Accepted: 14 Oct 2025; Available Online: 03 Feb 2026;

Abbey, M., Smith, A. G., Yue, C., Marson, C., Lai, Y., & Stowers, C. (2024). Measuring specialty crop grower willingness to pay for genetic modification and genetic editing. Agribusiness, 41(3), 615-632. https://doi.org/10.1002/agr.21911

Abd-Elsalam, K. A., & Lim, K.-T. (2021). Can CRISPRized crops save the global food supply? In CRISPR and RNAi Systems (pp. 1–14). Elsevier. https://doi.org/10.1016/B978-0-12-821910-2.00006-0

Abu Bakar, U. K., Pillai, V., Hashim, M., & Daud, H. M. (2005). Sharing Malaysian experience with the development of biotechnology-derived food crops. Food and Nutrition Bulletin, 26(4_suppl3), S317–S320. https://doi.org/10.1177/15648265050264S312

Abushal, L. T., Salama, M., Essa, M. M., & Qoronfleh, M. W. (2021). Agricultural biotechnology: Revealing insights about ethical concerns. Journal of Biosciences, 46(3), 81. https://doi.org/10.1007/s12038-021-00203-0

Ahmed, S., Shohael, A. M., Ahamed, T., Ahmed, R., Ahmed, S., & Hassan, H. M. S. (2024). Understanding public perspectives on genetically engineered Brinjal and the adoption of modern biotechnology in Bangladesh. Frontiers in Bioengineering and Biotechnology, 12, 1471201. https://doi.org/10.3389/fbioe.2024.1471201

Anjanappa, R. B., & Gruissem, W. (2021). Current progress and challenges in crop genetic transformation. Journal of Plant Physiology, 261, 153411. https://doi.org/10.1016/j.jplph.2021.153411

Anyshchenko, A. (2022). Aligning policy design with science to achieve food security: the contribution of genome editing to sustainable agriculture. Frontiers in Sustainable Food Systems, 6, 897643. https://doi.org/10.3389/fsufs.2022.897643

Altieri, M. A., & Nicholls, C. I. (2020). Agroecology and the reconstruction of a post-COVID-19 agriculture. The Journal of Peasant Studies, 47(5), 881–898. https://doi.org/10.1080/03066150.2020.1782891

Arpaia, S. (2021). Environmental risk assessment in agro-ecosystems: Revisiting the concept of receiving environment after the EFSA guidance document. Ecotoxicology and Environmental Safety, 208, 111676. https://doi.org/10.1016/j.ecoenv.2020.111676

Azadi, H., Samiee, A., Mahmoudi, H., Jouzi, Z., Rafiaani, P., Torkamani, J., & Van Passel, S. (2022). GM crops and smallholders: A systematic review of socioeconomic impacts. Sustainability, 14(5), 2721. https://doi.org/10.3390/su14052721

Azadi, H., Taheri, F., Ghazali, S., Moghaddam, S. M., Siamian, N., Goli, I., Choobchian, S., Pour, M., Özgüven, A. I., & Janečková, K. (2022). Genetically modified crops in developing countries: Savior or traitor? Journal of Cleaner Production, 371, 133296. https://doi.org/10.1016/j.jclepro.2022.133296

Basak, A., Mondol, M. S. A., Dattta, J., Chakraborty, M., Reza, M. W., Khatun, M., De, T., & Paramanik, B. (2024). From lab to plate: harnessing plant genetic engineering for resilient and sustainable agriculture. Sustainable Agriculture: Nanotechnology, Biotechnology, Management and Food Security, 267. https://doi.org/10/1515/9783111369754-013

Basha, N. M. A., & Kader, A. M. A. (2022). Genetically modified crops, production, detection methods and its biosafety implications: a scientific review. https://doi.org/10.22268/AJPP-40.3.260279

Bennett, R. M., Phipps, R. H., & Strange, A. M. (2006). An application of life-cycle assessment for environmental planning and management: the potential environmental and human health impacts of growing genetically-modified herbicide-tolerant sugar beet. Journal of Environmental Planning and Management, 49(1), 59–74. https://doi.org/10.1080/09640560500373139

Bennett, R., Phipps, R., Strange, A., & Grey, P. (2004). Environmental and human health impacts of growing genetically modified herbicide‐tolerant sugar beet: a life‐cycle assessment. Plant Biotechnology Journal, 2(4), 273–278. https://doi.org/10.1111/j.1467-7652.2004.00076.x

Bhat, S. R., & Chopra, V. L. (2005). Transgenic crops: Priorities and strategies for India. Current Science, 88(6), 886–889. https://www.jstor.org/stable/24110368

Brossard, D. (2012). Social challenges. The Role of Biotechnology in a Sustainable Food Supply, 17–31. https://doi.org/10.1017/CBO9781139026710.003

Bryan, G., Winichayakul, S., & Roberts, N. (2025). Nutritional enhancement of animal feed and forage crops via genetic modification. Journal of the Royal Society of New Zealand, 55(2), 327–342. https://doi.org/10.1080/03036758.2024.2387136

Carpenter, J. E. (2013). The socio-economic impacts of currently commercialised genetically engineered crops. International Journal of Biotechnology, 12(4), 249–268. https://doi.org/10.1504/IJBT.2013.059248

Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667–697. https://doi.org/10.1146/annurev-arplant-050718-100049

Clare, A., Müller, R., & Feiler, J. (2025). “It’s all about factory farming:” German public imaginaries of gene editing technologies in animal agriculture. Agriculture and Human Values, 1–19. https://doi.org/10.1007/s10460-025-10712-5

Dargie, J. D., Ruane, J., & Sonnino, A. (2013). Ten lessons from biotechnology experiences in crops, livestock and fish for smallholders in developing countries. Asian Biotechnology and Development Review, 15(3), 103–110. https://ris.org.in/sites/default/files/2021-09/ABDR%20November%202013.pdf#page=109

Dastan, S., Ghareyazie, B., Teixeira da Silva, J. A., & Pishgar-Komleh, S. H. (2020). Assessment of the life cycle of genetically modified and non-genetically modified rice cultivars. Arabian Journal of Geosciences, 13(10), 362. https://doi.org/10.1007/s12517-020-05386-8

Dunfield, K. E., & Germida, J. J. (2004). Impact of genetically modified crops on soil‐and plant‐associated microbial communities. Journal of Environmental Quality, 33(3), 806–815. https://doi.org/10.2134/jeq2004.0806

Dunwell, J. M. (2004). Patents and transgenic plants. V International Symposium on In Vitro Culture and Horticultural Breeding 725, 719–732. https://doi.org/10.17660/ActaHortic.2006.725.101

Ekici, K., & Sancak, Y. C. (2011). A perspective on genetically modified food crops. African Journal of Agricultural Research, 6(7), 1639–1642. https://doi.org/10.5897/AJAR10.284

Erickson, L. R., & Atnaseo, C. (2011). Transgenic crops with producer-oriented traits: Development, application, and impact. In M. Moo-Young (Ed.), Comprehensive Biotechnology (2nd ed., pp. 121–131). Elsevier/Academic Press. https://doi.org/10.1016/B978-0-08-088504-9.00254-3

Ferreira, S. J., Kossmann, J., Lloyd, J. R., & Groenewald, J. (2008). The reduction of starch accumulation in transgenic sugarcane cell suspension culture lines. Biotechnology Journal: Healthcare Nutrition Technology, 3(11), 1398–1406. https://doi.org/10.1002/biot.200800106

Frison, E., & Demers, N. (2013). Building a global plant genetic resources system. In Genomics of Plant Genetic Resources: Volume 1. Managing, sequencing and mining genetic resources (pp. 3–25). Springer. https://doi.org/10.1007/978-94-007-7572-5_1

Galili, G., & Amir, R. (2013). Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality. Plant Biotechnology Journal, 11(2), 211–222. https://doi.org/10.1111/pbi.12025

Galili, G., Shaul, O., Karchi, H., & Perl, A. (2017). Synthesis and accumulation of the essential amino acid lysine and threonine in seeds. In Seed development and germination (pp. 811–831). Routledge. https://doi.org/10.1201/9780203740071

Ghimire, B. K., Yu, C. Y., Kim, W.-R., Moon, H.-S., Lee, J., Kim, S. H., & Chung, I. M. (2023). Assessment of benefits and risk of genetically modified plants and products: current controversies and perspective. Sustainability, 15(2), 1722. https://doi.org/10.3390/su15021722

Hagan, N. D., & Higgins, T. J. V. (2024). Enhancing the nutritive value of seeds by genetic engineering. In Handbook of seed science and technology (pp. 171–193). CRC Press. https://doi.org/10.1201/9781003578369

Halder, K., Chaudhuri, A., Abdin, M. Z., Majee, M., & Datta, A. (2022). RNA interference for improving disease resistance in plants and its relevance in this clustered regularly interspaced short palindromic repeats-dominated era in terms of dsRNA-based biopesticides. Frontiers in Plant Science, 13, 885128. https://doi.org/10.3389/fpls.2022.885128

Hasan, M. M., & Rima, R. (2021). Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference. Transgenic Research, 30(2), 207–220. https://doi.org/10.1007/s11248-021-00235-0

Hefferon, K. L. (2018). Crops with improved nutritional content though agricultural biotechnology. In Plant Micronutrient Use Efficiency (pp. 279–294). Elsevier. https://doi.org/10.1016/B978-0-12-812104-7.00019-8

Hesse, H., & Hoefgen, R. (2003). Molecular aspects of methionine biosynthesis. Trends in Plant Science, 8(6), 259–262. https://doi.org/10.1016/S1360-1385(03)00107-9

Idris, S. H., Zulkipli, Z. N., Zain, F. M., Manab, S. N. A., Jayabalan, S., Oon, J. C. C., Arifin, R., & Rodiyah. (2023). Bioethical issues on farmers’ rights relating to genetically modified crops. AIP Conference Proceedings, 2881(1), 50002. https://doi.org/10.1063/5.0176465

International Service for the Acquisition of Agri-biotech Applications (ISAAA). (2022). Global status of commercialized biotech/GM crops in 2019. ISAAA Brief No. 55. Ithaca, NY: ISAAA. ISBN 978-1-892456-69-9.

Jeong, H., & Jung, K. (2015). Rice tissue‐specific promoters and condition‐dependent promoters for effective translational application. Journal of Integrative Plant Biology, 57(11), 913–924. https://doi.org/10.1111/jipb.12362

Jiang, L., Yu, X., Qi, X., Yu, Q., Deng, S., Bai, B., Li, N., Zhang, A., Zhu, C., & Liu, B. (2013). Multigene engineering of starch biosynthesis in maize endosperm increases the total starch content and the proportion of amylose. Transgenic Research, 22, 1133–1142. https://doi.org/10.1007/s11248-013-9717-4

Jones, J. D. G. (2011). Why genetically modified crops? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1942), 1807–1816. https://doi.org/10.1098/rsta.2010.0345

Karau, A., & Grayson, I. (2014). Amino acids in human and animal nutrition. Biotechnology of Food and Feed Additives, 189–228. https://doi.org/10.1007/10_2014_269

Katoch, R., & Thakur, N. (2013). RNA interference: a promising technique for the improvement of traditional crops. International Journal of Food Sciences and Nutrition, 64(2), 248–259. https://doi.org/10.3109/09637486.2012.713918

Khabbazi, S. D., Khabbazi, A. D., Cevik, V., & Ergül, A. (2020). Genetic engineering of horticultural crops contributes to the improvement of crop nutritional quality and shelf life. Transgenic Technology Based Value Addition in Plant Biotechnology, 247–272. https://doi.org/10.1016/B978-0-12-818632-9.00011-3

Kleter, G. A. (2022). Food and feed safety considerations for gene-edited and other genetically modified crops. In Agricultural Biocatalysis (pp. 251–283). Jenny Stanford Publishing. https://doi.org/10.1201/9781003313144

Kochhar, V. K., Kochhar, S., & Rao, S. S. (2003). Regulation of key biosynthetic enzymes of aspartate family amino acids in plants. ISSN: 0971-5894.

Komen, J., & Koch, M. (2017). Building human cpacity and skills in biosafety: Lessons learned and emerging best practices. Risk Analysis Methodology and Decision-Making, Eds AA Ademola, EJ Morris and JD Murphy (Cambridge: Cambridge University Press), 75–88. https://doi.org/10.1017/9781316585269.008

Komen, J., Tripathi, L., Mkoko, B., Ofosu, D. O., Oloka, H., & Wangari, D. (2020). Biosafety regulatory reviews and leeway to operate: case studies from sub-Sahara Africa. Frontiers in Plant Science, 11, 130. https://doi.org/10.3389/fpls.2020.00130

Kumar, K., Gambhir, G., Dass, A., Tripathi, A. K., Singh, A., Jha, A. K., Yadava, P., Choudhary, M., & Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Planta, 251(4), 91. https://doi.org/10.1007/s00425-020-03372-8

Kundu, A., Nain, A., Sanwal, S. K., Singh, V., Tyagi, B. S., Sharma, A., Yadav, S., Dahiya, A., Rohila, N., & Mann, A. (2024). Halophytic Genes to Edit Glycophyte’s Genome for Salinity Tolerance. In Halophytes vis-à-vis Saline Agriculture: Perspectives and Opportunities for Food Security (pp. 367–383). Springer. https://doi.org/10.1007/978-981-97-3157-2_14

Le Roy, P., Ducos, A., & Phocas, F. (2019). What performance for tomorrow’s animals? Breeding goals and selection methods. https://doi.org/10.20870/productions-animales.2019.32.2.2466

Limenie, A. D., & Alehegn, M. (2025). Genetic Engineering for Cereal Crop Yield Improvement and Disease Resistant Breeding. The Scientific World Journal, 2025(1), 6743917. https://doi.org/10.1155/tswj/6743917

Long, C. R., Tessanne, K. J., & Golding, M. C. (2009). Applications of RNA interference-based gene silencing in animal agriculture. Reproduction, Fertility and Development, 22(1), 47–58. https://doi.org/10.1071/RD09211

Marinho, C. D., Martins, F. J. O., Amaral Júnior, A. T., Gonçalves, L. S. A., dos Santos, O., Alves, D. P., Brasileiro, B. P., & Peternelli, L. A. (2014). Genetically modified crops: Brazilian law and overview. http://dx.doi.org/10.4238/2014.July.7.15

Marshall, K., Quiros-Campos, C., Van der Werf, J. H. J., & Kinghorn, B. (2011). Marker-based selection within smallholder production systems in developing countries. Livestock Science, 136(1), 45–54. https://doi.org/10.1016/j.livsci.2010.09.006

Mbambalala, L., Rani, Z. T., Mpanza, T. D. E., Mthana, M. S., Ncisana, L., & Mkhize, N. R. (2023). Fodder radish as a potential alternative feed source for livestock in South Africa. Agriculture, 13(8), 1625. https://doi.org/10.3390/agriculture13081625

Mehta-Bhatt, P., Ebora, R. V, Cohen, J. I., Zepeda, J. F., & Zambrano, P. (2005). An overview of regulation, perceptions and priorities for GM crops in Asian countries. Asian Biotechnology and Development Review, 7(3), 9–24. ISSN 0972-7566.

Menchaca, A. (2021). Sustainable food production: The contribution of genome editing in livestock. Sustainability, 13(12), 6788. https://doi.org/10.3390/su13126788

Mii, M., Khan, R. S., & Chin, D. P. (2011). Genetic transformation of ornamental and vegetable crops. II Genetically Modified Organisms in Horticulture Symposium 974, 131–137. https://doi.org/10.17660/ActaHortic.2013.974.15

Mukhtiar, A., Mahmood, A., Khan, M. A., Ameen, M., Al-Khayri, J. M., & Qari, S. H. (2025). Transforming field crops with CRISPR/Cas: a new era in genome editing. Rendiconti Lincei. Scienze Fisiche e Naturali, 1–14. https://doi.org/10.1007/s12210-025-01308-6

Müller, R., Feiler, J., & Clare, A. (2022). A doomed technology? On gene editing in bavarian livestock agriculture, policy field conflicts and responsible research and innovation. Frontiers in Political Science, 4, 800211. https://doi.org/10.3389/fpos.2022.800211

Nigam, D., Devkar, V., Dhiman, P., Shakoor, S., Liu, D., Patil, G. B., & Jiao, Y. (2025). Emerging frontiers in sorghum genetic engineering. The Plant Journal, 121(4), e17244. https://doi.org/10.1111/tpj.17244

Olaniyan, O. F., Oladejo, O. A., Adeola, A. C., Bello, S. F., Bashiru, H. A., & Oseni, S. O. (2024). Integration of genomics into community-based breeding programmes for chickens: an overview of opportunities, challenges, and potential benefits. World’s Poultry Science Journal, 80(3), 977–997. https://doi.org/10.1080/00439339.2024.2354194

Ortiz, R. (2002). Biotechnology with horticultural and agronomic crops in Africa. XXVI International Horticultural Congress: Horticulture, Art and Science for Life-The Colloquia Presentations 642, 43–56. https://doi.org/10.17660/ActaHortic.2004.642.5

Ozkok, G. A. (2015). Genetically modified foods and the probable risks on human health. Int J Nutr Food Sci, 4(3), 356–363. https://doi.org/10.11648/j.ijnfs.20150403.23

Pandey, A. K., Pandey, K., & Singh, L. K. (2020). Microbial production and applications of L-lysine. In Innovations in Food Technology: Current Perspectives and Future Goals (pp. 211–229). Springer. https://doi.org/10.1007/978-981-15-6121-4_15

Pellegrini, P. A. (2013). What risks and for whom? Argentina’s regulatory policies and global commercial interests in GMOs. Technology in Society, 35(2), 129–138. https://doi.org/10.1016/j.techsoc.2013.01.003

Popelka, J. C., Terryn, N., & Higgins, T. J. V. (2004). Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Science, 167(2), 195–206. https://doi.org/10.1016/j.plantsci.2004.03.027

Rajam, M. V. (2020). RNA silencing technology: A boon for crop improvement. Journal of Biosciences, 45(1), 118. https://doi.org/10.1007/s12038-020-00082-x

Rajput, M., Choudhary, K., Kumar, M., Vivekanand, V., Chawade, A., Ortiz, R., & Pareek, N. (2021). RNA interference and CRISPR/Cas gene editing for crop improvement: paradigm shift towards sustainable agriculture. Plants, 10(9), 1914. https://doi.org/10.3390/plants10091914

Renjith, P. S., Radhakrishnan, S. K., & Patel, A. (2023). Grass-Legume Intercropping for Enhancing Quality Fodder Production in Drylands. In Enhancing Resilience of Dryland Agriculture Under Changing Climate: Interdisciplinary and Convergence Approaches (pp. 575–583). Springer. https://doi.org/10.1007/978-981-19-9159-2_28

Sabat, M., & Tripathy, A. (2024). Genetically Modified and Gene-Edited Food Crops: Recent Status and Future Prospects. Food Production, Diversity, and Safety Under Climate Change, 211–222. https://doi.org/10.1007/978-3-031-51647-4_18

Saeed, T., & Shahzad, A. (2016). Basic principles behind genetic transformation in plants. Biotechnological Strategies for the Conservation of Medicinal and Ornamental Climbers, 327–350. https://doi.org/10.1007/978-3-319-19288-8_13

Sahoo, D. P., & Panda, C. (2023). Enhancing Nutritional Quality of Crops Through Genetic Engineering. In Engineering Aspects of Food Quality and Safety (pp. 77–92). Springer. https://doi.org/10.1007/978-3-031-30683-9_4

Sairam, R. V, & Prakash, C. S. (2005). OBPC Symposium: maize 2004 & beyond—Can agricultural biotechnology contribute to global food security? In Vitro Cellular & Developmental Biology-Plant, 41, 424–430. https://doi.org/10.1079/IVP2005663

Sanvido, O., Romeis, J., & Bigler, F. (2007). Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation. Green Gene Technology: Research in an Area of Social Conflict, 235–278. https://doi.org/10.1007/10_2007_048

Schlosser, A. J., Martin, J. M., Hannah, L. C., & Giroux, M. J. (2012). The maize leaf starch mutation agps‐m1 has diminished field growth and productivity. Crop Science, 52(2), 700–706. https://doi.org/10.2135/cropsci2011.03.0158

Shewry, P. R. (2007). Improving the protein content and composition of cereal grain. Journal of Cereal Science, 46(3), 239–250. https://doi.org/10.1016/j.jcs.2007.06.006

Shewry, P. R., Jones, H. D., & Halford, N. G. (2008). Plant biotechnology: transgenic crops. Food Biotechnology, 149–186. https://doi.org/10.1007/10_2008_095

Smith, A. M. (2008). Prospects for increasing starch and sucrose yields for bioethanol production. The Plant Journal, 54(4), 546–558. https://doi.org/10.1111/j.1365-313X.2008.03468.x

Smith, R. H., Zapata, C., Park, S. H., Srivatanakul, M., Lee, B. M., & Salas, M. G. (2000). Plant Transformation Using Agrobacterium and the Shoot Apex. A Spectrum of Achievements in Agronomy: Women Fellows of the Tri‐Societies, 62, 43–46. https://doi.org/10.2134/asaspecpub62.c5

Smyth, S. J., McHughen, A., Entine, J., Kershen, D., Ramage, C., & Parrott, W. (2021). Removing politics from innovations that improve food security. Transgenic Research, 30, 601–612. https://doi.org/10.1007/s11248-021-00261-y

Stamm, P., Ramamoorthy, R., & Kumar, P. P. (2011). Feeding the extra billions: strategies to improve crops and enhance future food security. Plant Biotechnology Reports, 5, 107–120. https://doi.org/10.1007/s11816-011-0169-0

Stewart Jr, C. N. (2004). Genetically modified planet: environmental impacts of genetically engineered plants. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195157451.001.0001

Taberlet, P., Valentini, A., Rezaei, H. R., Naderi, S., Pompanon, F., Negrini, R., & Ajmone‐Marsan, P. (2008). Are cattle, sheep, and goats endangered species? Molecular Ecology, 17(1), 275–284. https://doi.org/10.1111/j.1365-294X.2007.03475.x

Tait-Burkard, C., Doeschl-Wilson, A., McGrew, M. J., Archibald, A. L., Sang, H. M., Houston, R. D., Whitelaw, C. B., & Watson, M. (2018). Livestock 2.0–genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 19, 1–11. https://doi.org/10.1186/s13059-018-1583-1

Telugu, B. P., Park, K.-E., & Park, C.-H. (2017). Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mammalian Genome, 28, 338–347. https://doi.org/10.1007/s00335-017-9709-4

Tien Lea, D., Duc Chua, H., & Quynh Lea, N. (2016). Improving nutritional quality of plant proteins through genetic engineering. Current Genomics, 17(3), 220–229. https://doi.org/10.2174/1389202917666160202215934

Touzdjian Pinheiro Kohlrausch Távora, F., de Assis dos Santos Diniz, F., de Moraes Rêgo-Machado, C., Chagas Freitas, N., Barbosa Monteiro Arraes, F., Chumbinho de Andrade, E., Furtado, L. L., Osiro, K. O., Lima de Sousa, N., & Cardoso, T. B. (2022). CRISPR/Cas-and topical RNAi-based technologies for crop management and improvement: Reviewing the risk assessment and challenges towards a more sustainable agriculture. Frontiers in Bioengineering and Biotechnology, 10, 913728. https://doi.org/10.3389/fbioe.2022.913728

Tripathi, L., Ntui, V. O., & Tripathi, J. N. (2020). Application of genetic modification and genome editing for developing climate-smart banana. Food and Energy Security, 9(1), e187. https://doi.org/10.1002/fes3.168

Vallarino, J. G., Kubiszewski-Jakubiak, S., Ruf, S., Rößner, M., Timm, S., Bauwe, H., Carrari, F., Rentsch, D., Bock, R., & Sweetlove, L. J. (2020). Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Scientific Reports, 10(1), 17219. https://doi.org/10.1038/s41598-020-73709-6

Verma, C., Nanda, S., Singh, R. K., Singh, R. B., & Mishra, S. (2011). A review on impacts of genetically modified food on human health. Open Nutraceuticals J, 4(1), 3–11. https://doi.org/10.2174/1876396001104010003

Wall, E., Simm, G., & Moran, D. (2010). Developing breeding schemes to assist mitigation of greenhouse gas emissions. Animal, 4(3), 366–376. DOI: https://doi.org/10.1017/S175173110999070X

Wang, L., Fan, Z., Wu, D., & Li, R. (2020). Research progress of methionine nutrition in aquatic animals. Chinese Journal of Animal Nutrition, 32(11), 4981–4991. https://doi.org/10.3969/j.issn.1006-267X.2020.11.001

Weldemichael, M. Y., Gebremedhn, H. M., & Teklu, T. H. (2024). Advances in genome editing and future prospects for Sorghum improvement: A review. Plant Gene, 100464. https://doi.org/10.1016/j.plgene.2024.100464

White, R. R., Brady, M., Capper, J. L., McNamara, J. P., & Johnson, K. A. (2015). Cow–calf reproductive, genetic, and nutritional management to improve the sustainability of whole beef production systems. Journal of Animal Science, 93(6), 3197–3211. https://doi.org/10.2527/jas.2014-8800

Willis, L. B., Lessard, P. A., & Sinskey, A. J. (2005). Synthesis of L-threonine and branched-chain amino acids. In L. Eggeling & M. Bott (Eds.), Handbook of Corynebacterium glutamicum (pp. 511–531). Boca Raton, FL: CRC Press. ISBN 978-0-8493-1821-4.

Wunderlich, S., & Vecchione, M. (2014). Genetically modified food and its impact on the environment. WIT Transactions on Ecology and the Environment, 181, 445– 454. https://doi.org/10.2495/EID140381

Yuhong, G., Rasheed, A., Zhuo, Z., Gardiner, J. J., Hassan, M. U., Fahad, S., Gillani, S. F. A., Batool, M., & Jian, W. (2022). Principles and Practices of Genome Editing in Crop Plants. In Principles and Practices of OMICS and Genome Editing for Crop Improvement (pp. 1–21). Springer. https://doi.org/10.1007/978-3-030-96925-7_1

Zennah, K., & Cyrus, K. (2019). Potential uses, perceptions and policy issues of genetically modified crops in Africa: a case study of Kenya. African Journal of Food, Agriculture, Nutrition and Development, 19(1), 13946–13958. https://doi.org/10.18697/ajfand.84.BLFB10