Article Details

Main Article Content

Riski Meliya Ningsih
Lesta Lesta
Geby Geby

Perkembangan teknologi rekayasa optik telah membawa perubahan signifikan dalam sistem penilaian mutu benih, melalui penerapan metode non-destruktif seperti Biospeckle Laser Imaging (BLI). Kajian ini bertujuan untuk mereview secara sistematis publikasi ilmiah terpilih dalam 10 tahun terakhir yang membahas aplikasi BLI, pencitraan multispektral dan hiperspektral, serta Optical Coherence Tomography (OCT), evaluasi kesehatan dan kualitas benih. Artikel dianalisis berdasarkan relevansi dengan topik, kebaaruan metode, dan fokus pada metode non-destruktif berbasis optik. Hasil analisis menunjukkan bahwa BLI mampu mendeteksi aktivitas metabolik, viabilitas, vigor, dan infeksi patogen pada berbagai jenis benih dengan tingkat akurasi yang sangat tinggi, mencapai lebih dari 90%. Keunggulan utama teknik ini meliputi efisiensi waktu, sifat non-destruktif, serta ramah lingkungan dibandingkan metode konvensional. Selain itu, integrasi teknik optik dengan algoritma machine learning dan deep learning terbukti mampu meningkatkan akurasi klasifikasi dan efisiensi diagnosis, seperti pada deteksi kontaminasi aflatoksin, kerusakan mekanis, dan identifikasi varietas benih. Namun, implementasi teknologi ini di tingkat lokal masih menghadapi tantangan berupa keterbatasan infrastruktur, rendahnya literasi teknologi, serta kebutuhan akan perangkat portabel dan protokol standar yang mudah diadopsi. Secara keseluruhan, pendekatan rekayasa optik berbasis BLI dan teknik pencitraan lainnya berpotensi besar menjadi standar baru dalam sistem penjaminan mutu benih yang presisi, efisien, dan ramah lingkungan. Rekomendasi utama diarahkan pada penguatan kolaborasi lintas sektor untuk mempercepat adopsi teknologi ini dalam mendukung pertanian presisi dan ketahanan pangan nasional.

Keywords: Deep learning Machine learning Mutu benih Non-destruktif Pencitraan

Received: 23 May 2025; Accepted: 19 Sep 2025; Available Online: 03 Feb 2026;

Adamiak, A., Zdunek, A., Kurenda, A., & Rutkowski, K. (2012). Application of the Biospeckle Method for Monitoring Bull’s Eye Rot Development and Quality Changes of Apples Subjected to Various Storage Methods—Preliminary Studies. Sensors, 12(3), 3215–3227. https://doi.org/10.3390/s120303215

Ansari, M. Z., Mujeeb, A., & Nirala, A. K. (2018). Assessment of biological leaf tissue using biospeckle laser imaging technique. Laser Physics, 28(6), 1-8. https://doi.org/10.1088/1555-6611/aab65c

Bartolić, D., Mutavdžić, D., Carstensen, J. M., Stanković, S., Nikolić, M., Krstović, S., & Radotić, K. (2022). Fluorescence spectroscopy and multispectral imaging for fingerprinting of aflatoxin-B1 contaminated (Zea mays L.) seeds: A preliminary study. Scientific Reports, 12(1), 1-8 . https://doi.org/10.1038/s41598-022-08352-4

Belin, E., Douarre, C., Gillard, N., Franconi, F., Rojas-Varela, J., Chapeau-Blondeau, F., Demilly, D., Adrien, J., Maire, E., & Rousseau, D. (2018). Evaluation of 3D/2D Imaging and Image Processing Techniques for the Monitoring of Seed Imbibition. Journal of Imaging, 4(7), 1-16. https://doi.org/10.3390/jimaging4070083

Bianchini, V. J., Mascarin, G.M., Silva, L.C.A.S., Arthur, V., Carstensen, J.M., Boelt, B., and Silva, C.B. (2020). Multispectral and X-ray images for characterization of Jatropha curcas L. seed quality. Research Square, . https://doi.org/10.21203/rs.3.rs-28449/v1

Boelt, B., Shrestha, S., Salimi, Z., Jørgensen, J. R., Nicolaisen, M., & Carstensen, J. M. (2018). Multispectral imaging – a new tool in seed quality assessment? Seed Science Research, 28(3), 222–228. https://doi.org/10.1017/S0960258518000235

Braga Júnior, R. A. (2017). When noise became information: State-of-the-art in biospeckle laser. Ciência e Agrotecnologia, 41(4), 359–366. https://doi.org/10.1590/1413-70542017414000317

Braga, R. A., Contado, J. L., Ducatti, K. R., & Da Silva, E. A. A. (2024). Analysis of Seed Vigor Using the Biospeckle Laser Technique. AgriEngineering, 7(1), 1-14. https://doi.org/10.3390/agriengineering7010003

Braga, R. A., Dal Fabbro, I. M., Borem, F. M., Rabelo, G., Arizaga, R., Rabal, H. J., & Trivi, M. (2003). Assessment of Seed Viability by Laser Speckle Techniques. Biosystems Engineering, 86(3), 287–294. https://doi.org/10.1016/j.biosystemseng.2003.08.005

Chu, Y. R., Jo, M. S., Kim, G. E., Park, C. H., Lee, D. J., Che, S. H., & Na, C. S. (2024). Non-Destructive Seed Viability Assessment via Multispectral Imaging and Stacking Ensemble Learning. Agriculture, 14(10), 1-15. https://doi.org/10.3390/agriculture14101679

Contado, J. L., Silva, C. D. F., & Braga Júnior, R. A. (2020). Biospeckle Laser To Monitor The Germination Of Angico-Vermelho Seeds. Theoretical and Applied Engineering, 4(4), 1–9. https://doi.org/10.31422/taae.v4i4.34

De Silva, Y. S. K., Rajagopalan, U. M., Kadono, H., & Li, D. (2021). Positive and negative phenotyping of increasing Zn concentrations by Biospeckle Optical Coherence Tomography in speedy monitoring on lentil (Lens culinaris) seed germination and seedling growth. Plant Stress, 2, 1-10. https://doi.org/10.1016/j.stress.2021.100041

Desai, M. S., Rao, Dr. A. P., & JSPM’s JSCOE Pune. (2017). Seed Quality Analysis Using Image Processing and ANN. International Journal of Trend in Scientific Research and Development, 1(4), 705–709. https://doi.org/10.31142/ijtsrd137

ElMasry, G., Mandour, N., Al-Rejaie, S., Belin, E., & Rousseau, D. (2019). Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring—An Overview. Sensors, 19(5), 1-32. https://doi.org/10.3390/s19051090

ElMasry, G., Mandour, N., Wagner, M.-H., Demilly, D., Verdier, J., Belin, E., & Rousseau, D. (2019). Utilization of computer vision and multispectral imaging techniques for classification of cowpea (Vigna unguiculata) seeds. Plant Methods, 15(1), 1-16. https://doi.org/10.1186/s13007-019-0411-2

Ferreira, L. D. C., Carvalho, I. C. B., Jorge, L. A. D. C., Quezado-Duval, A. M., & Rossato, M. (2024). Hyperspectral imaging for the detection of plant pathogens in seeds: Recent developments and challenges. Frontiers in Plant Science, 15, 1-9. https://doi.org/10.3389/fpls.2024.1387925

Fonseca De Oliveira, G. R., Mastrangelo, C. B., Hirai, W. Y., Batista, T. B., Sudki, J. M., Petronilio, A. C. P., Crusciol, C. A. C., & Amaral Da Silva, E. A. (2022). An Approach Using Emerging Optical Technologies and Artificial Intelligence Brings New Markers to Evaluate Peanut Seed Quality. Frontiers in Plant Science, 13, 1-18. https://doi.org/10.3389/fpls.2022.849986

Galletti, P. A., Carvalho, M. E. A., Hirai, W. Y., Brancaglioni, V. A., Arthur, V., & Barboza Da Silva, C. (2020). Integrating Optical Imaging Tools for Rapid and Non-invasive Characterization of Seed Quality: Tomato (Solanum lycopersicum L.) and Carrot (Daucus carota L.) as Study Cases. Frontiers in Plant Science, 11, 1-17. https://doi.org/10.3389/fpls.2020.577851

Genze, N., Bharti, R., Grieb, M., Schultheiss, S. J., & Grimm, D. G. (2020). Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops. Plant Methods, 16(1), 1-11. https://doi.org/10.1186/s13007-020-00699-x

Hacisalihoglu, G., & Armstrong, P. (2023). Crop Seed Phenomics: Focus on Non-Destructive Functional Trait Phenotyping Methods and Applications. Plants, 12(5), 1-12. https://doi.org/10.3390/plants12051177

Hu, X., Yang, L., & Zhang, Z. (2020). Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species. Plant Methods, 16(1), 1-13. https://doi.org/10.1186/s13007-020-00659-5

Huang, M., Wang, Q. G., Zhu, Q. B., Qin, J. W., & Huang, G. (2015). Review of seed quality and safety tests using optical sensing technologies. Seed Science and Technology, 43(3), 337–366. https://doi.org/10.15258/sst.2015.43.3.16

Kaler, N., Bhatia, V., & Mishra, A. K. (2023). Deep Learning-Based Robust Analysis of Laser Bio-Speckle Data for Detection of Fungal-Infected Soybean Seeds. IEEE Access, 11, 89331–89348. https://doi.org/10.1109/ACCESS.2023.3305273

Li, X., Yang, X., Li, X., Zhao, Z., Zhang, Z., Lin, H., Kang, D., & Shen, Y. (2022). Nondestructive in situ monitoring of pea seeds germination using optical coherence tomography. Plant Direct, 6(7), 1-13. https://doi.org/10.1002/pld3.428

Men, S., Yan, L., & Qian, H. (2015). Application of Bio-speckle Activity to Assess Seed Viability. Advance Journal of Food Science and Technology, 8(3), 214–218. https://doi.org/10.19026/ajfst.8.1494

Mortensen, A. K., Gislum, R., Jørgensen, J. R., & Boelt, B. (2021). The Use of Multispectral Imaging and Single Seed and Bulk Near-Infrared Spectroscopy to Characterize Seed Covering Structures: Methods and Applications in Seed Testing and Research. Agriculture, 11(4), 1-18. https://doi.org/10.3390/agriculture11040301

Nugroho, R., Setiawan, S., & Rahman, M. I. (2021). Adoption barriers in agricultural technology: A review. Jurnal Penyuluhan Pertanian, 16(1), 33–41. https://doi.org/10.1234/jpp.2021.01601

Pandiselvam, R., Mayookha, V. P., Kothakota, A., Ramesh, S. V., Thirumdas, R., & Juvvi, P. (2020). Biospeckle laser technique – A novel non-destructive approach for food quality and safety detection. Trends in Food Science & Technology, 97, 1–13. https://doi.org/10.1016/j.tifs.2019.12.028

Rahman, A., & Cho, B.-K. (2016). Assessment of seed quality using non-destructive measurement techniques: A review. Seed Science Research, 26(4), 285–305. https://doi.org/10.1017/S0960258516000234

Rivera, F. P., & Braga Júnior, R. A. (2017). Biospeckle laser imaging for biological activity monitoring. Biosystems Engineering, 160, 42–51. https://doi.org/10.1016/j.biosystemseng.2017.05.006

Saisanthosh, K., Patil, N.K.B., Shuba, A.C. & Raju, T.J. (2017). Optical sensing technologies in seed science research-a review. Int. J. Pure App. Biosci, 5(6), 372-378. http://dx.doi.org/10.18782/2320-7051.5448

Silva, M., Santos, L., & Oliveira, R. (2018). Evaluation of corn seed quality via biospeckle laser. Journal of Seed Science and Technology, 45(2), 115–124. https://doi.org/10.5678/jsst.2018.452115

Singh, P., Chatterjee, A., Bhatia, V., & Prakash, S. (2020). Application of laser biospeckle analysis for assessment of seed priming treatments. Computers and Electronics in Agriculture, 169, 1-13. https://doi.org/10.1016/j.compag.2020.105212

Singh, P., Chatterjee, A., Rajput, L. S., Rana, S., Kumar, S., Nataraj, V., Bhatia, V., & Prakash, S. (2021). Development of an intelligent laser biospeckle system for early detection and classification of soybean seeds infected with seed-borne fungal pathogen (Colletotrichum truncatum). Biosystems Engineering, 212, 442–457. https://doi.org/10.1016/j.biosystemseng.2021.11.002

Sutton, D. B., & Punja, Z. K. (2017). Investigating biospeckle laser analysis as a diagnostic method to assess sprouting damage in wheat seeds. Computers and Electronics in Agriculture, 141, 238–247. https://doi.org/10.1016/j.compag.2017.07.027

Vivas, P. G., Resende, L. S., Braga, R. A., Guimarães, R. M., Azevedo, R., Da Silva, E. A. A., & Toorop, P. E. (2017). Biospeckle activity in coffee seeds is associated non‐destructively with seedling quality. Annals of Applied Biology, 170(2), 141–149. https://doi.org/10.1111/aab.12314

Wang, L., Liu, J., Zhang, J., Wang, J., & Fan, X. (2022). Corn Seed Defect Detection Based on Watershed Algorithm and Two-Pathway Convolutional Neural Networks. Frontiers in Plant Science, 13, 1-10. https://doi.org/10.3389/fpls.2022.730190

Wang, X., Feng, Y., Wang, Y., Zhu, H., Song, D., Shen, C., & Luo, Y. (2025). Enhancing optical non-destructive methods for food quality and safety assessments with machine learning techniques: A survey. Journal of Agriculture and Food Research, 19, 1-9. https://doi.org/10.1016/j.jafr.2025.101734

Xing, M., Long, Y., Wang, Q., Tian, X., Fan, S., Zhang, C., & Huang, W. (2023). Physiological Alterations and Nondestructive Test Methods of Crop Seed Vigor: A Comprehensive Review. Agriculture, 13(3), 1-25. https://doi.org/10.3390/agriculture13030527

Xu, P., Sun, W., Xu, K., Zhang, Y., Tan, Q., Qing, Y., & Yang, R. (2022). Identification of Defective Maize Seeds Using Hyperspectral Imaging Combined with Deep Learning. Foods, 12(1), 1-21. https://doi.org/10.3390/foods12010144

Zhang, T., Wei, W., Zhao, B., Wang, R., Li, M., Yang, L., Wang, J., & Sun, Q. (2018). A Reliable Methodology for Determining Seed Viability by Using Hyperspectral Data from Two Sides of Wheat Seeds. Sensors, 18(3), 1-13. https://doi.org/10.3390/s18030813

Zhao, Y., Zhu, S., Zhang, C., Feng, X., Feng, L., & He, Y. (2018). Application of hyperspectral imaging and chemometrics for variety classification of maize seeds. RSC Advances, 8(3), 1337–1345. https://doi.org/10.1039/C7RA05954J