Review: Potensi Weedy Rice (Oryza sativa F. Spontanea) untuk Menjawab Tantangan Penyediaan Sumber Gen Penting dalam Perakitan Tanaman Tangguh Iklim
Abstract viewed : 502 times, PDF downloaded : 475 times
Abstract
Padi (Oryza sativa L.) merupakan komoditas penting ke-dua di Dunia dan menjadi makanan utama di Asia. Perubahan iklim memberikan dampak negatif terhadap lingkungan dan menimbulkan berbagai bencana. Perubahan iklim juga menyebabkan pengaruh yang variatif terhadap padi. Weedy rice (Oryza sativa F. Spontanea) selama ini dianggap sebagai gulma dan menjadi ancaman diberbagai negara meskipun masih termasuk dalam spesies padi budidaya. Eksistensi weedy rice menunjukkan karakter toleran terhadap berbagai cekaman yang dapat ditransfer ke padi budidaya. Berdasarkan hal tersebut review terkait karakter karakter dan gen-gen penting penting dilakukan untuk menyediakan informasi bagi pemulia dalam merakit tanaman tangguh iklim (climate resilience plants). Hasil dari review ini menunnjukkan bahwa weedy rice memiliki karakter yang berkorelasi dengan gen-gen yang tahan terhadap cekaman (biotik dan abiotik). Beberapa gen yang meregulasi karakter tersebut sudah ditemukan, beserta beberapa lokusnya. Kedepannya weedy rice dapat menjadi alternatif dalam penyediaan gen donor untuk merakit tanaman padi yang resisten terhadap berbagai cekaman.
References
Abraham, C., & Jose, N. (2014). Weedy rice invasion in rice fields of India and management options. Journal of Crop and Weed, 10(2), 365–374.
Ahsan, S., Ali, M. S., Hoque, M. R., Osman, M. S., Rahman, M., Babar, M. J., & Islam, K. R. (2010). Agricultural and environmental changes in Bangladesh in response to global warming. In Climate change and food security in South Asia. Springer, Dordrecht, 119-134.
Ayinde, VET, O., Daramola, & Falaki. (2013). Evaluation of The Effects Of Climate Change On Rice Production In Niger State, Nigeria. Ethiopian Journal of Environmental Studies and Management, 6(1), 763–773.
Azmi, M., Azlan, S., Yim, K. M., George, T. V., & Chew, S. E. (2011). Control of weedy rice in direct-seeded rice using the Clearfield production system in Malaysia. In 23rd Asian-Pacific Weed Science Society Conference. Volume 1: weed management in a changing world. 26-29 September 2011 Cairns, Queensland, Australia, 50-54.
Baek, J. S., & Chung, N. J. (2012). Seed wintering and deterioration characteristics between weedy and cultivated rice, Rice, 5(1), 1–10.
Bevilacqua, C. B., Basu, S., Pereira, A., Tseng, T. M., Zimmer, P. D., & Burgos, N. R. (2015). Analysis of stress-responsive gene expression in cultivated and weedy rice differing in cold stress tolerance. PLoS One, 10(7).
Burgess, A. J., Retkute, R., Herman, T., & Murchie, E. H. (2017). Exploring relationships between canopy architecture, light distribution, and photosynthesis in contrasting rice genotypes using 3D canopy reconstruction. Frontiers in Plant Science, 8(734), 1–15.
Busi, R. Nguyen, N.K., Chauhan, B.S., Vidotto, F. Tabacchi, M. & Powles, S. B. (2016). Can herbicide safeners allow selective control of weedy rice infesting rice crops?. Pest Management Science, 73(1), 71-77.
Bzour, M.-I., Zuki. F.-M., & Mispan. M. S. (2018). Introduction of imidazolinone herbicide and Clearfield® rice between weedy rice control efficiency and environmental concerns. Environmental Reviews, 26(2), 10-21.
Cao, Q., Lu, B. R., Xia, H., Rong, J., Sala, F., Spada, A., & Grassi, F. (2006). Genetic diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in North-eastern China revealed by simple sequence repeat (SSR) markers. Annals of Botany, 98(6), 1241–1252.
Chandio, A. A., Magsi, H., & Ozturk, I. (2020). Examining the effects of climate change on rice production: case study of Pakistan. Environmental Science and Pollution Research, 27(8), 7812–7822.
Dai, L., Song, X., He, B., Valverde, B. E., & Qiang, S. (2017). Enhanced photosynthesis endows seedling growth vigour contributing to the competitive dominance of weedy rice over cultivated rice. Pest Management Science, 73(7), 1410–1420.
De Leon, T. B., Karn, E., Al-Khatib, K., Espino, L., Blank, T., Andaya, C. B., Andaya, V. C., & Brim-DeForest, W. (2019). Genetic variation and possible origins of weedy rice found in California. Ecology and Evolution, 9(10), 5835–5848.
Fogliatto, S., Vidotto, F., & Ferrero, A. (2010). Effects of winter flooding on weedy rice (Oryza sativa L.). Crop Protection, 29(11), 1232-1240.
Fogliatto, S., Vidotto, F., & Ferrero, A. (2012). Morphological characterisation of Italian weedy rice (Oryza sativa) populations. Weed Research, 52(1), 60–69.
Fogliatto, Silvia, Serra, F., Patrucco, L., Milan, M., & Vidotto, F. (2019). Effect of different water salinity levels on the germination of imazamox-resistant and sensitive weedy rice and cultivated rice. Agronomy, 9(10), 658.
Gadal, N., Shrestha, J., Poudel, M. N., & Pokharel, B. (2019). A review on production status and growing environments of rice in Nepal and in the world. Archives of Agriculture and Environmental Science, 4(1), 83-87.
Goad, D. M., Jia, Y., Gibbons, A., Liu, Y., Gealy, D., Caicedo, A. L., & Olsen, K. M. (2020). Identification of Novel QTL Conferring Sheath Blight Resistance in Two Weedy rice Mapping Populations. Rice, 13(1), 1-10.
Grimm, A., Fogliatto, S., Nick, P., Ferrero, A., & Vidotto, F. (2013). Microsatellite markers reveal multiple origins for Italian weedy rice. Ecology and Evolution, 3(14), 4786–4798.
Gu, X. Y., Foley, M. E., Horvath, D. P., Anderson, J. V., Feng, J., Zhang, L., Mowry, C. R., Ye, H., Suttle, J. C., Kadowaki, K. I., & Chen, Z. (2011). Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics, 189(4), 1515–1524.
Hakim, M. A., Juraimi, A. S., Hanafi, M. M., Selamat, A., Ismail, M. R., & Rezaul Karim, S. M. (2011). Studies on seed germination and growth in weed species of rice field under salinity stress. Journal of Environmental Biology, 32(5), 529–536.
He, Q., Kim, K. W., & Park, Y. J. (2017). Population genomics identifies the origin and signatures of selection of Korean weedy rice. Plant Biotechnology Journal, 15(3), 357–366.
Huang, Z., Kelly, S., Matsuo, R., Li, L. F., Li, Y., Olsen, K. M., Jia, Y., & Caicedo, A. L. (2018). The role of standing variation in the evolution of weedines traits in South Asian Weedy rice (Oryza spp.). G3: Genes, Genomes, Genetics, 8(11), 3679–3690.
Imaizumi, T. (2018). Weedy rice represents an emerging threat to transplanted rice production systems in Japan. Weed Biology and Management, 18(2), 99-102.
Ishikawa, R., Toki, N., Imai, K., Sato, Y. I., Yamagishi, H., Shimamoto, Y., & Sato, T. (2005). Origin of weedy rice grown in Bhutan and the force of genetic diversity. Genetic Resources and Crop Evolution, 52(4), 395-403.
Juliano, L. M., Donayre, D. K. M., Martin, E. C., & Beltran, J. C. (2020). Weedy rice: An expanding problem in direct-seeded rice in the Philippines. Weed Biology and Management, 20(2), 27–37.
Khush, G. S. (1997). Origin, dispersal, cultivation and variation of rice Gurdev. Plant Molecular Biology, 35(1), 25–34.
Kim, H. Y., Ko, J., Kang, S., & Tenhunen, J. 2013. Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biology, 19(2), 548–562.
Kinose, Y., Masutomi, Y., Shiotsu, F., Hayashi, K., Ogawada, D., Gomez-Garcia, M., Matsumura, A., Takahashi, K., & Fukushi, K. (2020). Impact assessment of climate change on the major rice cultivar ciherang in Indonesia. Journal of Agricultural Meteorology, 76(1), 19–28.
Lee, S., Jia, Y., Jia, M., Gealy, D. R., Olsen, K. M., & Caicedo, A. L. (2011). Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA. PLos one, 6(10).
Li, L. F., Li, Y. L., Jia, Y., Caicedo, A. L., & Olsen, K. M. (2017). Signatures of adaptation in the weedy rice genome. Nature Genetics, 49(5), 811–814.
Munda, S., Saha, S., Adak, T., Lambhulkar, N., Sanghamitra, P., & Patra, B.-C. (2019). Performance of cultivated indica rice (Oryza Sativa L.) as affected by weedy rice. Experimental Agriculture, 55(6), 875 – 884.
Neik, T. X., Chai, J. Y., Tan, S. Y., San Sudo, M. P., Cui, Y., Jayaraj, J., Teo, S. S., Olsen, K. M., & Song, B. K. (2019). When west meets east: The origins and spread of weedy rice between continental and island Southeast Asia. G3: Genes, Genomes, Genetics, 9(9), 2941–2950.
Nguyen, T., Fu, K., Mou, C., Yu, J., Zhu, X., Huang, Y., Zhou, C., Hao, Q., Zhang, F., Song, W., Wang, P., Chen, Y., Ma, T., Tian, Y., Liu, S., Jiang, L., & Wan, J. (2020). Fine mapping of qSdr9, a novel locus for seed dormancy (SD) in weedy rice, and development of NILs with a strong SD allele. Molecular Breeding, 40(8), 1-11.
Olajumoke, B., Juraimi, A. S., Uddin, M. K., Husni, M. H. A., & Alam, M. A. (2016). Competitive ability of cultivated rice against weedy rice biotypes – A review. Chilean Journal of Agricultural Research, 76(2), 243–252.
Olsen, K. M., Caicedo, A. L., & Jia, Y. (2007). Evolutionary genomics of weedy rice in the USA. Journal of Integrative Plant Biology, 49(6), 811–816.
Piveta, L. B., Roma-burgos, N., Noldin, A., Viana, E., Oliveira, C. De, Lamego, F. P., & Avila, L. A. De. (2021). Molecular and Physiological Responses of Rice and Weedy rice to Heat and Drought Stress. Agriculture, 11(9), 1–21.
Puteh, A. B., Jali, N., Ismail, M. R., Juraimi, A. S., & Samsudin, N. (2009). Pollen and seed yield components of water-stressed cultivated and weedy rice. Pertanika J. Trop. Agric. Sci, 32(2), 293-303.
Qiu, J., Zhou, Y., Wang, Y., Mao, L., Ye, C., Wang, W., Zhang, J., Yu, Y., Fu, F., Wang, Y., Qian, F., Qi, T., Wu, S., Sultana, M. H., Cao, Y. N., Timko, M. P., Ge, S., Fan, L., & Lu, Y. (2017). Genomic variation associated with local adaptation of weedy rice during de-domestication. Nature Communications, 8(1), 1–12.
Rathore, M., Singh, R., & Kumar, B. (2013). Weedy rice: an emerging threat to rice cultivation and options for its management. Current Science, 105(8), 1067-1072.
Ratnasekera, D. (2015). Weedy rice: A threat to rice production in Sri Lanka. Journal of the University of Ruhuna, 3(1), 2-13.
Saragih, A. A., Puteh, A. B., Ismail, M. R., & Mondal, M. M. A. (2013). Pollen quality traits of cultivated (Oryza sativa L. Ssp. Indica) and weedy (Oryza sativa var. Nivara) rice to water stress at reproductive stage. Australian Journal of Crop Science, 7(8), 106-1112.
Sarker, M. A. R., Alam, K., & Gow, J. (2012). Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data. Agricultural Systems, 112, 11–16.
Silitonga, T. S. (2004). Pengelolaan dan Pemanfaatan Plasma Nutfah Padi di Indonesia. Buletin Plasma Nutfah, 10(2), 56.
Singh, K., Kumar, V., Sahrawat, Y. S., Gathala, M., Ladha. J. K., & Chauhan. B. S. (2013). Weedy rice: An Emerging Threat for Direct-seeded Rice Production Systems in India. J. Rice Res, 1(1), 1-6.
Sitaresmi, T., Wening, R. H., Rakhmi, A. T., Yunani, N., & Susanto, U. (2015). Pemanfaatan Plasma Nutfah Padi Varietas Lokal dalam Perakitan Varietas Unggul. Iptek Tanaman Pangan, 8(1), 22–30.
Streck, N. A., Uhlmann, L. O., & Gabriel, L. F. (2013). Leaf development of cultivated rice and weedy red rice under elevated temperature scenarios. Revista Brasileira de Engenharia Agricola e Ambiental, 17(2), 190–199.
Sudianto, E., Neik, T.-X., Tam, S. M., Chuah, T.-S., Idris, A. A., Olsen, K. M., & Song, B. K. (2016). Morphology of Malaysian Weedy rice (Oryza sativa): Diversity, Origin and Implications for Weed Management. Weed Science, 64(3), 501–512.
Sun, J., Ma, D., Tang, L., Zhao, M., Zhang, G., Wang, W., Song, J., Li, X., Liu, Z., Zhang, W., Xu, Q., Zhou, Y., Wu, J., Yamamoto, T., Dai, F., Lei, Y., Li, S., Zhou, G., Zheng, H., … Chen, W. (2019). Population Genomic Analysis and De Novo Assembly Reveal the Origin of Weedy rice as an Evolutionary Game. Molecular Plant, 12(5), 632–647.
Van Oort, P. A. J., & Zwart, S. J. (2018). Impacts of climate change on rice production in Africa and causes of simulated yield changes. Global Change Biology, 24(3), 1029–1045.
Vigueira, C. C., Qi, X., Song, B. K., Li, L. F., Caicedo, A. L., Jia, Y., & Olsen, K. M. (2017). Call of the wild rice: Oryza rufipogon shapes weedy rice evolution in Southeast Asia. Evolutionary Applications, 12(1), 93–104.
Wang, Y., Mo, S. D., Kong, M. Y., Chao, J., Chen, X. F., Yang, J. L., ... & Dai, W. M. (2019). Better performance of germination in hyperosmotic solutions in conspecific weedy rice than cultivated rice. Journal of Systematics and Evolution, 57(5), 519-529.
Zhang, S., Tian, L., Li, J., Wang, C., Lee, D., Peng, R., & Chen, L. (2017). Morphological Characterization of Weedy rice Populations from Different Regions of Asia. Molecular Plant Breeding, 8(6), 52–64.
Zhang, Y., Fang, J., Wu, X., & Dong, L. (2018). Na + /K + Balance and Transport Regulatory Mechanisms in Weedy and Cultivated Rice (Oryza sativa L.) Under Salt Stress. BMC Plant Biology, 18(1), 1–14.
Zibaee, A. (2013). Rice: Importance and Future. Rice Research: Open Access, 1(2).
Ziska, L. H., Gealy, D. R., Tomecek, M. B., Jackson, A. K., & Black, H. L. (2012). Recent and projected increases in atmospheric CO2 concentration can enhance gene flow between wild and genetically altered rice (Oryza sativa). PLoS ONE. 7(5):1–6.
Ziska, L. H., Tomecek, M. B., & Gealy, D. R. (2010). Competitive interactions between cultivated and red rice as a function of recent and projected increases in atmospheric carbon dioxide. Agronomy Journal, 102(1), 118–123.