Respons Sifat Kimia Tanah terhadap Pemberian Biochar Kulit Kakao sebagai Soil Amandement di Tanah Grumosol
Abstract
Tanah Grumosol adalah jenis tanah yang banyak mengandung liat sehingga mampu menyimpan unsur hara, tetapi sering mengikat fosfor (P) dan kalium (K). Akibatnya, tanaman sulit menyerap kedua unsur tersebut walaupun jumlahnya ada di dalam tanah. Limbah kulit kakao dapat diolah menjadi biochar (arang hayati) dan digunakan untuk memperbaiki tanah karena dapat meningkatkan pH, menambah karbon organik, dan membantu menjaga unsur hara agar tidak hilang. Namun, sifat biochar sangat dipengaruhi oleh suhu pembuatannya. Penelitian ini bertujuan mengetahui bagaimana reaksi tanah Grumosol setelah diberi biochar kulit kakao yang dibuat pada dua suhu berbeda, yaitu 300°C dan 500°C, dengan jumlah biochar yang sama di setiap perlakuan. Penelitian menggunakan Rancangan Acak Lengkap (RAL) dengan tiga perlakuan: tanpa biochar (kontrol), biochar 300°C, dan biochar 500°C; masing-masing diulang empat kali. Pengamatan dilakukan pada pH tanah, karbon organik, nitrogen total, fosfor tersedia, dan kalium tersedia, sebelum dan sesudah perlakuan. Hasil penelitian diharapkan dapat menjelaskan apakah biochar kulit kakao mampu mengurangi pengikatan P dan K oleh tanah Grumosol, meningkatkan ketersediaan hara bagi tanaman, serta memengaruhi kemampuan tanah menyimpan unsur hara. Penelitian ini sekaligus mengisi kekurangan penelitian sebelumnya mengenai penggunaan biochar kulit kakao pada tanah liat berat seperti Grumosol.
References
Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to Improve Soil Fertility. A review. In Agronomy for Sustainable Development, 36, Issue 2). Springer-Verlag France. https://doi.org/10.1007/s13593-016-0372-z
Lehmann, J., & Joseph, S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. Routledge.
Li, Y., Zhao, H., & Chen, M. (2021). Effect of Biochar Applications On Soil Phosphorus Availability Under Different Moisture Conditions. Canadian Journal of Soil Science, 102(1), 23–34. https://doi.org/10.1139/cjss-2021-0023
Liu, X., Chen, X., & Zhang, Y. (2022). Effect of Pyrolysis Temperature On Biochar Properties And Its Potential For Soil pH Regulation. Environmental Technology & Innovation, 25. https://doi.org/10.1016/j.eti.2021.102073
Luo, D., Wang, S., & Liu, H. (2022). Phosphorus Adsorption By Functionalized Biochar: A review. Journal of Environmental Management, 316. https://doi.org/10.1016/j.jenvman.2022.115243
Ma, N., Zhang, L., & Liu, Y. (2021). Influence Of Biochar Ph And Mineral Composition On Soil Chemical Properties And Crop Yield. Agriculture, Ecosystems & Environment, 317. https://doi.org/10.1016/j.agee.2021.107472
Ng, C. W. W., Chan, W. P., & Ho, J. H. (2022). Effects Of Phosphorus-Modified Biochar As A Soil Amendment On Plant Growth And Phosphorus Availability. Scientific Reports, 12. https://doi.org/10.1038/s41598-022-11170-3
Novak, J. M., Sigua, G. C., & Watts, D. W. (2020). Biochars Influence On Soil Properties And Processes: An Updated Review. Critical Reviews in Environmental Science and Technology, 50(6), 548–582. https://doi.org/10.1080/10643389.2019.1629803
Premalatha, R. P., Poorna Bindu, J., Nivetha, E., Malarvizhi, P., Manorama, K., Parameswari, E., & Davamani, V. (2023). A Review On Biochar’s Effect On Soil Properties And Crop Growth. In Frontiers in Energy Research (Vol. 11). Frontiers Media SA. https://doi.org/10.3389/fenrg.2023.1092637
Sun, Z., Hu, Y., Shi, L., Li, G., Pang, Z., Liu, S., Chen, Y., & Jia, B. (2022). Effects Of Biochar On Soil Chemical Properties: A Global Meta-Analysis Of Agricultural Soil. Plant, Soil and Environment, 68(6), 272–289. https://doi.org/10.17221/522/2021-PSE
Tumbure, A. T., Chikowo, R., & Mapanda, F. (2023). Long-Term Biochar Application Improves Soil Microbial Activity And Nutrient Cycling Under Tropical Conditions. Applied Soil Ecology, 186. https://doi.org/10.1016/j.apsoil.2023.104913
Wu, P., Cui, D., & Lu, Q. (2021). Biochar Amendment Enhances Soil Microbial Activity And Nutrient Use Efficiency In Degraded Soils. Ecological Engineering, 163. https://doi.org/10.1016/j.ecoleng.2021.106193
Xu, J., Tang, C., & Zhou, Y. (2023). Characterization Of Cocoa Shell Biochar Under Different Pyrolysis Temperatures And Its Implications For Soil Improvement. Journal of Analytical and Applied Pyrolysis, 169. https://doi.org/10.1016/j.jaap.2023.105756
Ye, L., Camps-Arbestain, M., Shen, Q., Lehmann, J., Singh, B., & Sabir, M. (2020). Biochar Effects On Crop Yields With And Without Fertilizer: A Meta-Analysis Of Field Studies Using Separate Controls. In Soil Use and Management, 36(1), 2–18. https://doi.org/10.1111/sum.12546
Yuan, J.-H., Xu, R.-K., & Zhang, H. (2018). The Forms Of Alkalis In The Biochar Produced From Crop Residues At Different Temperatures. Bioresource Technology, 102(3), 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018








