A Review of Matcha (Camellia sinensis) Quality: Genetic, Agronomic, and Physiological Determinants

  • Bagus Aradea Universitas Tidar
  • Aswin Hendry Atmoko Universitas Sebelas Maret
Keywords: Agronomi, Fisiologi, Genetik, Matcha, Theanin

Abstract

Kualitas matcha superior sangat bergantung pada profil metabolit sekunder yang kompleks, sehingga diperlukan strategi terpadu antara genetik dan praktik agronomi. penelitian ini menggunakan metode studi literatur dan review artikel ilmiah untuk memperoleh informasi mengenai genetik dan praktik agronomi dalam produksi teh untuk diolah menjadi matcha premium. Pemilihan kultivar teh (genetik) merupakan faktor penentu yang mendasari rasa, warna, dan aroma spesifik matcha. Teknik penaungan merupakan praktik agronomi esensial yang memicu respons fisiologis optimal, terutama dalam meningkatkan Theanine dan Klorofil sekaligus menekan Katekin penyebab rasa pahit melalui intensitas penaungan sekitar 85%. Aroma segar, yang merupakan indikator kualitas, dikendalikan oleh senyawa volatil dan dapat ditingkatkan melalui strategi penaungan dan pemupukan yang tepat menggunakan NPK dikombinasikan dengan organik/biochar terbukti efektif dalam meningkatkan pertumbuhan, konsentrasi Klorofil, dan kualitas aroma. Penelitian mendatang harus memiliki fokus terhadap pemuliaan tanaman terintegrasi dengan marka molekuler untuk induksi gen yang berkaitan dengan Theanine, selain itu pengembangan praktik pertanian presisi yang mengintegrasikan genetik, penaungan dinamis, dan optimasi aroma sangat diperlukan untuk menjamin kualitas matcha yang konsisten dan berdaya saing global.

References

Aradea, B. (2025). Physiological and Anatomy Responses of Plants to Various Abiotic Stresses: A Comprehensive Review. 3(2). https://doi.org/10.21107/jsa.v3i2.33.

Aradea, B., Historiawati, & Astiningrum, M. (2025). Exogenous melatonin applications on acid rain stress mitigation in tea (Camellia sinensis). Journal of Science in Agrotechnology, 3(1). https://doi.org/10.21107/jsa.v3i1.24

Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, J. I. (2019). Genetic strategies for improving crop yields. Nature, 575(7781), 109–118. https://doi.org/10.1038/s41586-019-1679-0

Chen, X., Ye, K., Xu, Y., Zhao, Y., & Zhao, D. (2022a). Effect of Shading on the Morphological, Physiological, and Biochemical Characteristics as Well as the Transcriptome of Matcha Green Tea. International Journal of Molecular Sciences, 23(22), 14169. https://doi.org/10.3390/ijms232214169

Chen, X., Ye, K., Xu, Y., Zhao, Y., & Zhao, D. (2022b). Effect of Shading on the Morphological, Physiological, and Biochemical Characteristics as Well as the Transcriptome of Matcha Green Tea. International Journal of Molecular Sciences, 23(22), 14169. https://doi.org/10.3390/ijms232214169

Chigbu, U. E., Atiku, S. O., & Du Plessis, C. C. (2023). The Science of Literature Reviews: Searching, Identifying, Selecting, and Synthesising. Publications, 11(1), 2. https://doi.org/10.3390/publications11010002

Dong, C., Li, F., Yang, T., Feng, L., Zhang, S., Li, F., Li, W., Xu, G., Bao, S., Wan, X., Lucas, W. J., & Zhang, Z. (2020). Theanine transporters identified in tea plants ( Camellia sinensis L.). The Plant Journal, 101(1), 57–70. https://doi.org/10.1111/tpj.14517

Hu, Y., Yu, H., Song, X., Chen, W., Ding, L., Chen, J., Liu, Z., Guo, Y., Xu, D., Zhu, X., Zhou, C., Zhang, J., Liao, B., Zhou, J., Li, X., Wang, Y., & He, Y. (2024). Comprehensive assessment of matcha qualities and visualization of constituents using hyperspectral imaging technology. Food Research International, 196, 115110. https://doi.org/10.1016/j.foodres.2024.115110

Huang, D., Wang, Y., Chen, X., Wu, J., Wang, H., Tan, R., Jiao, L., & Mao, Y. (2022). Application of Tea-Specific Fertilizer Combined with Organic Fertilizer Improves Aroma of Green Tea. Horticulturae, 8(10), 950. https://doi.org/10.3390/horticulturae8100950

Ji, L., Wu, Z., You, Z., Yi, X., Ni, K., Guo, S., & Ruan, J. (2018). Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agriculture, Ecosystems & Environment, 268, 124–132. https://doi.org/10.1016/j.agee.2018.09.008

Jiang, X., Huang, K., Zheng, G., Hou, H., Wang, P., Jiang, H., Zhao, X., Li, M., Zhang, S., Liu, Y., Gao, L., Zhao, L., & Xia, T. (2018). CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis. Plant Science, 270, 209–220. https://doi.org/10.1016/j.plantsci.2018.02.009

Kato, M., Mizuno, K., Crozier, A., Fujimura, T., & Ashihara, H. (2000). Caffeine synthase gene from tea leaves. Nature, 406(6799), 956–957. https://doi.org/10.1038/35023072

Kika, J., Jakubczyk, K., Ligenza, A., Maciejewska-Markiewicz, D., Szymczykowska, K., & Janda-Milczarek, K. (2024). Matcha Green Tea: Chemical Composition, Phenolic Acids, Caffeine and Fatty Acid Profile. Foods, 13(8), 1167. https://doi.org/10.3390/foods13081167

Lan, T., Zeng, Q., Chen, L., Tu, Z., Ye, Y., Liu, Y., & He, W. (2023). Comparison of Volatile and Nonvolatile Metabolites in Black Tea under Four Second-Drying Methods Using Widely Targeted Metabolomics. Foods, 13(1), 144. https://doi.org/10.3390/foods13010144

Lin, S., Chen, Z., Chen, T., Deng, W., Wan, X., & Zhang, Z. (2023). Theanine metabolism and transport in tea plants ( Camellia sinensis L.): Advances and perspectives. Critical Reviews in Biotechnology, 43(3), 327–341. https://doi.org/10.1080/07388551.2022.2036692

Liu, L., Lin, N., Liu, X., Yang, S., Wang, W., & Wan, X. (2020). From Chloroplast Biogenesis to Chlorophyll Accumulation: The Interplay of Light and Hormones on Gene Expression in Camellia sinensis cv. Shuchazao Leaves. Frontiers in Plant Science, 11, 256. https://doi.org/10.3389/fpls.2020.00256

Manzoor, Ma, L., Ni, K., & Ruan, J. (2024). Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards’ Top Rhizosphere Soil. Plants, 13(2), 207. https://doi.org/10.3390/plants13020207

Matsunaga, A., Sano, T., Hirono, Y., & Horie, H. (2016). Effects of Various Directly Covered Shading Levels on Chemical Components in Tea New Shoots of the First Flush. Chagyo Kenkyu Hokoku (Tea Research Journal), 2016(122), 1–7. https://doi.org/10.5979/cha.2016.122_1

Merigó, J. M., Blanco-Mesa, F., Gil-Lafuente, A. M., & Yager, R. R. (2017). Thirty Years of the International Journal of Intelligent Systems: A Bibliometric Review: THIRTY YEARS OF THE INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS. International Journal of Intelligent Systems, 32(5), 526–554. https://doi.org/10.1002/int.21859

Ohgami, S., Ono, E., Horikawa, M., Murata, J., Totsuka, K., Toyonaga, H., Ohba, Y., Dohra, H., Asai, T., Matsui, K., Mizutani, M., Watanabe, N., & Ohnishi, T. (2015). Volatile Glycosylation in Tea Plants: Sequential Glycosylations for the Biosynthesis of Aroma β -Primeverosides Are Catalyzed by Two Camellia sinensis Glycosyltransferases. Plant Physiology, 168(2), 464–477. https://doi.org/10.1104/pp.15.00403

Ott, J., Wang, J., & Leal, S. M. (2015). Genetic linkage analysis in the age of whole-genome sequencing. Nature Reviews Genetics, 16(5), 275–284. https://doi.org/10.1038/nrg3908

Peluso, I., & Serafini, M. (2017). Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mechanisms. British Journal of Pharmacology, 174(11), 1195–1208. https://doi.org/10.1111/bph.13649

Sano, T., Horie, H., Matsunaga, A., & Hirono, Y. (2018). Effect of shading intensity on morphological and color traits and on chemical components of new tea ( CAMELLIA SINENSIS L.) shoots under direct covering cultivation. Journal of the Science of Food and Agriculture, 98(15), 5666–5676. https://doi.org/10.1002/jsfa.9112

Wei, C., Yang, H., Wang, S., Zhao, J., Liu, C., Gao, L., Xia, E., Lu, Y., Tai, Y., She, G., Sun, J., Cao, H., Tong, W., Gao, Q., Li, Y., Deng, W., Jiang, X., Wang, W., Chen, Q., … Wan, X. (2018). Draft genome sequence of Camellia sinensis var. Sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences, 115(18). https://doi.org/10.1073/pnas.1719622115

Xia, E.-H., Zhang, H.-B., Sheng, J., Li, K., Zhang, Q.-J., Kim, C., Zhang, Y., Liu, Y., Zhu, T., Li, W., Huang, H., Tong, Y., Nan, H., Shi, C., Shi, C., Jiang, J.-J., Mao, S.-Y., Jiao, J.-Y., Zhang, D., … Gao, L.-Z. (2017). The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Molecular Plant, 10(6), 866–877. https://doi.org/10.1016/j.molp.2017.04.002

Xiao, S., Qian, R., Hu, S., Fu, Z., Bai, T., Wang, W., Cheng, J., & Zhang, J. (2023). Advances in the Production of Theanine by Plants and Microorganisms. Fermentation, 9(6), 543. https://doi.org/10.3390/fermentation9060543

Xu, P., Su, H., Jin, R., Mao, Y., Xu, A., Cheng, H., Wang, Y., & Meng, Q. (2020). Shading Effects on Leaf Color Conversion and Biosynthesis of the Major Secondary Metabolites in the Albino Tea Cultivar “Yujinxiang”. Journal of Agricultural and Food Chemistry, 68(8), 2528–2538. https://doi.org/10.1021/acs.jafc.9b08212

Yamashita, H., Tanaka, Y., Umetsu, K., Morita, S., Ono, Y., Suzuki, T., Takemoto, T., Morita, A., & Ikka, T. (2020). Phenotypic Markers Reflecting the Status of Overstressed Tea Plants Subjected to Repeated Shade Cultivation. Frontiers in Plant Science, 11, 556476. https://doi.org/10.3389/fpls.2020.556476

Yin, P., Kong, Y.-S., Liu, P.-P., Wang, J.-J., Zhu, Y., Wang, G.-M., Sun, M.-F., Chen, Y., Guo, G.-Y., & Liu, Z.-H. (2022). A critical review of key odorants in green tea: Identification and biochemical formation pathway. Trends in Food Science & Technology, 129, 221–232. https://doi.org/10.1016/j.tifs.2022.09.013

Zeng, L., Watanabe, N., & Yang, Z. (2019). Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea ( Camellia sinensis ) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 59(14), 2321–2334. https://doi.org/10.1080/10408398.2018.1506907

Published
2025-12-11