Efektivitas Plant Growth Promoting Rhizobacteria (PGPR) dalam Meningkatkan Pertumbuhan dan Produktivitas Mentimun (Cucumis sativus L.)
Abstract
Produksi mentimun (Cucumis sativus L.) di Indonesia sering mengalami variasi karena degradasi kualitas tanah yang disebabkan oleh tipe tanah, perubahan cuaca, dan penerapan pupuk kimia secara berlebihan. Salah satu solusi potensial untuk meningkatkan efisiensi pertumbuhan dan panen tanaman adalah pemberian Plant Growth Promoting Rhizobacteria (PGPR), yang diketahui dapat merangsang pertumbuhan melalui proses biologis. Studi ini bertujuan untuk menguji keefektifan berbagai tingkat dosis PGPR dalam memperbaiki pertumbuhan dan produktivitas mentimun. Penelitian dilakukan dari Juni hingga Agustus 2024 di Balai Penyuluhan Pertanian Kota Tangerang Selatan, dengan menggunakan Rancangan Kelompok Lengkap Teracak (RKLT) yang melibatkan lima jenis perlakuan: NPK 100% (sebagai kontrol), NPK 100% + PGPR 10 mL/L, 15 mL/L, 20 mL/L, dan 25 mL/L, masing-masing diulang sebanyak lima kali. Temuan penelitian menunjukkan bahwa pemberian PGPR tidak memberikan dampak signifikan pada sebagian besar indikator pertumbuhan dan hasil. Namun, perlakuan NPK 100% + PGPR 20 mL/L terbukti paling efektif pada beberapa parameter utama, seperti tinggi tanaman pada usia 4 minggu setelah tanam, usia berbunga, jumlah bunga jantan, panjang dan diameter buah, berat per buah, berat buah per tanaman, serta estimasi produksi per hektar. Hasil ini menunjukkan bahwa dosis PGPR sebesar 20 mL/L merupakan kombinasi terbaik yang dapat meningkatkan pertumbuhan dan produktivitas mentimun di daerah Tangerang Selatan.
References
Abdelkrim, S., Jebara, S., Saadani, O., Chiboub, M., Abid, G., & Jebara, M. (2018). Effect of Pb‐resistant plant growth‐promoting rhizobacteria inoculation on growth and lead uptake by Lathyrus sativus. Zeitschrift Für Allgemeine Mikrobiologie, 58(7), 579–589. https://doi.org/10.1002/jobm.201700626
Al-Karawi, H., & Habeeb, H. (2024). Application of calcium and zinc improves vegetative growth characteristics and plant hormones in strawberry. IOP Conference Series: Earth and Environmental Science, 1371(4), 042013. https://doi.org/10.1088/1755-1315/1371/4/042013
Al-Khayri, J., & Khan, T. (2024). Enhancing plant resistance to biotic stresses through rhizobacteria for sustainable agriculture. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(2), 13650. https://doi.org/10.15835/nbha52213650
Alhammad, B., Zaheer, M., Ali, H., Hameed, A., Ghanem, K., & Seleiman, M. (2023). Effect of co-application of Azospirillum brasilense and Rhizobium pisi on wheat performance and soil nutrient status under deficit and partial root drying stress. Plants, 12(17), 3141. https://doi.org/10.3390/plants12173141
Anguiano-Cabello, J., Flores‐Olivas, A., Fuentes, Y., Arredondo-Valdés, R., & Olalde‐Portugal, V. (2017). Fast detection of auxins by microplate technique. American Journal of Plant Sciences, 8(2), 171–177. https://doi.org/10.4236/ajps.2017.82013
Basharat, S., Saeed, W., Mubeen, S., Khan, L., Zhang, S., Liu, P., … Waseem, M. (2025). Exogenous melatonin regulates hormone signalling and photosynthesis‐related genes to enhance Brassica napus yield: A transcriptomic perspective. Journal of Pineal Research, 77(5). https://doi.org/10.1111/jpi.70077
Baral, B., Shrestha, M., Subedi, S., Dulal, P., & Joshi, N. (2022). Effect of foliar spray of ethephon doses and pruning intensities on growth, sex expression, and yield of cucumber (var. Bhaktapur local) in Kaski, Nepal. Archives of Agriculture and Environmental Science, 7(3), 347–354. https://doi.org/10.26832/24566632.2022.070307
Chen, D., Saeed, M., Ali, M., Raheel, M., Ashraf, W., Hassan, Z., … Negm, S. (2023). Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi combined application reveals enhanced soil fertility and rice production. Agronomy, 13(2), 550. https://doi.org/10.3390/agronomy13020550
Chen, T., Tzean, Y., Chang, T., Wang, X., Yang, C., & Lin, Y. (2024). Characterization of biofertilization and biocontrol potential of Bacillus velezensis KHH13 from organic soils. Agronomy, 14(6), 1135. https://doi.org/10.3390/agronomy14061135
Chun, L., Zeng, Q., Han, Y., Zhou, X., & Xu, H. (2024). Effects of Bacillus subtilis on cucumber seedling growth and photosynthetic system under different potassium ion levels. Biology, 13(5), 348. https://doi.org/10.3390/biology13050348
Cinta, N. (2024). Pengaruh konsentrasi dan interval waktu pemberian PGPR (plant growth promoting rhizobacteria) terhadap pertumbuhan dan produksi tanaman mentimun (Cucumis sativus L.). Callus Journal of Agrotechnology Science, 2(4), 26–38. https://doi.org/10.47134/callus.v2i4.2953
Cordero, I., Balaguer, L., Rincón, A., & Pueyo, J. (2018). Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. Journal of Plant Nutrition and Soil Science, 181(5), 694–703. https://doi.org/10.1002/jpln.201700480
Doni, Sasli, I., & Wasi’an. (2023). Respon pertumbuhan dan hasil mentimun terhadap berbagai konsentrasi pupuk Gandasil D dan B secara hidroponik. Jurnal Sains Pertanian Equator, 12(3), 504–513.
Hairuddin, R., Sacita, A., & Jopi, M. (2025). Pertumbuhan dan produksi tanaman mentimun Jepang (Cucumis sativus L. var. Japanese) pada pemberian plant growth promoting rhizobacteria dan cocopeat. Agroland Jurnal Ilmu-Ilmu Pertanian, 32(2), 172–180. https://doi.org/10.22487/agrolandnasional.v32i2.2664
Haiyambo, D., Chimwamurombe, P., & Reinhold‐Hurek, B. (2015). Isolation and screening of rhizosphere bacteria from grasses in East Kavango region of Namibia for plant growth promoting characteristics. Current Microbiology, 71(5), 566–571. https://doi.org/10.1007/s00284-015-0886-7
Han, L. (2024). Harnessing the power of PGPR: Unraveling the molecular interactions between beneficial bacteria and crop roots. Molecular Soil Biology. https://doi.org/10.5376/msb.2024.15.0002
Harahap, R., Simarmata, T., Herdiyantoro, D., & Azizah, I. (2022). Potential use of PGPR based biofertilizer for improving the nutrient availability in soil and agronomic efficiency of upland rice. Kultivasi, 21(3). https://doi.org/10.24198/kultivasi.v21i3.40061
Idris, S., Musa, N., & Pembengo, W. (2018). Produksi tanaman mentimun (Cucumis sativus L.) akibat pemangkasan dan jumlah benih per lubang tanam. Jurnal Agroteknotropika, 7(2), 229–235.
Irum, A., Haider, B., Hanif, A., Mazhar, M., Noreen, S., Hussain, I., … Jamil, M. (2023). Salinity-tolerant plant growth-promoting rhizobacteria’s (ST-PGPR) impact on soil quality indices and maize growth under saline environments. Pakistan Journal of Biotechnology, 20(01), 78–82. https://doi.org/10.34016/pjbt.2023.20.01.794
Islam, S., Akanda, A., Prova, A., Islam, T., & Hossain, M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01360
Gao, L., Yu, G., Hu, F., Li, Z., Li, W., & Peng, C. (2021). The patterns of male and female flowers in flowering stage may not be optimal resource allocation for fruit and seed growth. Plants, 10(12), 2819. https://doi.org/10.3390/plants10122819
Karmila, K., Mustafa, M., & Mustafa, R. (2023). Pengaruh pemberian giberelin acid dan PGPR (plant growth promoting rhizobacteria) dari akar bambu terhadap pertumbuhan dan hasil dua varietas tanaman mentimun (Cucumis sativus L.). Perbal Jurnal Pertanian Berkelanjutan, 11(2), 172–183. https://doi.org/10.30605/perbal.v11i2.2737
Kaur, N., Sharma, P., & Sharma, S. (2015). Co-inoculation of Mesorhizobium sp. and plant growth promoting rhizobacteria Pseudomonas sp. as bio-enhancer and bio-fertilizer in chickpea (Cicer arietinum L.). Legume Research - An International Journal. https://doi.org/10.18805/lr.v0iof.6780
Liu, Y., Chen, L., Zhang, N., Li, Z., Zhang, G., Xu, Y., … Zhang, R. (2016). Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium, Bacillus amyloliquefaciens SQR9. Molecular Plant-Microbe Interactions, 29(4), 324–330. https://doi.org/10.1094/mpmi-10-15-0239-r
Mangmang, J., Deaker, R., & Rogers, G. (2015). Optimal plant growth-promoting concentration of Azospirillum brasilense inoculated to cucumber, lettuce and tomato seeds varies between bacterial strains. Israel Journal of Plant Sciences, 62(3), 145–152. https://doi.org/10.1080/07929978.2015.1039290
Melo, J., Carolino, M., Carvalho, L., Correia, P., Tenreiro, R., Chaves, S., … Ramos, A. (2016). Crop management as a driving force of plant growth promoting rhizobacteria physiology. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-3232-z
Mohanty, P., Singh, P., Chakraborty, D., Mishra, S., & Pattnaik, R. (2021). Insight into the role of PGPR in sustainable agriculture and environment. Frontiers in Sustainable Food Systems, 5. https://doi.org/10.3389/fsufs.2021.667150
Montes-Osuna, N., Cernava, T., Cabanás, C., Berg, G., & Mercado‐Blanco, J. (2022). Identification of volatile organic compounds emitted by two beneficial endophytic Pseudomonas strains from olive roots. Plants, 11(3), 318. https://doi.org/10.3390/plants11030318
Mustafa, F., Hussain, A., Talha, M., Qureshi, S., Arif, A., Ali, K., … Sajjad, M. (2022). Plant growth-promoting rhizobacteria interactions provide a broad spectrum for ameliorating plant growth and tolerating environmental stresses. JQAAS, 2(01), 78–89. https://doi.org/10.38211/jqaas.2022.2.1.10
Pérez-García, L., Sáenz‐Mata, J., Fortis-Hernández, M., Navarro-Muñoz, C., Palacio-Rodríguez, R., & Preciado-Rangel, P. (2023). Plant-growth-promoting rhizobacteria improve germination and bioactive compounds in cucumber seedlings. Agronomy, 13(2), 315. https://doi.org/10.3390/agronomy13020315
Sakya, A., Purnomo, J., & Bima, D. (2022). Application of GA3 and PGPRs on growth and antioxidant content of parijoto (Medinilla verrucosa) in peat soil. IOP Conference Series: Earth and Environmental Science, 1016(1), 012009. https://doi.org/10.1088/1755-1315/1016/1/012009
Salem, M., Ismail, M., Radwan, K., & Abd‐Elhalim, H. (2024). Unlocking the potential of plant growth-promoting rhizobacteria to enhance drought tolerance in Egyptian wheat (Triticum aestivum). Sustainability, 16(11), 4605. https://doi.org/10.3390/su16114605
Samain, E., Duclercq, J., Barka, E., Eickermann, M., Ernenwein, C., Mazoyon, C., … Selim, S. (2023). PGPR-soil microbial communities’ interactions and their influence on wheat growth promotion and resistance induction against Mycosphaerella graminicola. Biology, 12(11), 1416. https://doi.org/10.3390/biology12111416
Seleiman, M., & Abdelaal, M. (2018). Effect of organic, inorganic and bio-fertilization on growth, yield and quality traits of some chickpea (Cicer arietinum L.) varieties. Egyptian Journal of Agronomy, 40(1), 105–117. https://doi.org/10.21608/agro.2018.2869.1093
Singarimbun, M. A., Pinem, M. I., & Oemry, S. (2017). Hubungan antara populasi kutu kebul (Bemisia tabaci Genn.) dan kejadian penyakit kuning pada tanaman cabai (Capsicum annum L.). Jurnal Agroteknologi FP USU, 5(4), 847–854.
Silva, M., Moen, F., Liles, M., Feng, Y., & Sanz‐Sáez, Á. (2022). The response to inoculation with PGPR plus orange peel amendment on soybean is cultivar and environment dependent. Plants, 11(9), 1138. https://doi.org/10.3390/plants11091138
Sutariati, G., & Muhidin, M. (2025). Characterization of saline soil rhizobacteria from coastal lands in dissolving phosphate, nitrogen fixing and synthesizing IAA growth hormone. Journal of Global Innovations in Agricultural Sciences, 995–1002. https://doi.org/10.22194/jgias/25.1591
Tahir, H., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., … Gao, X. (2017). Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00171
Tulak, T., Situru, R. S., & Batatta, Z. (2023). Pemanfaatan cuka aren sebagai herbisida alami untuk membasmi gulma. Jurnal Pengabdian Kepada Masyarakat, 7(4), 998–1003.
Wulandari, D., Aini, L., & Tarno, H. (2020). Eating behavior of imago Aulacophora similis Oliver on cucumber (Cucumis sativus L.) with treatment plant growth promoting rhizobacteria (PGPR). Research Journal of Life Science, 7(3), 192–201. https://doi.org/10.21776/ub.rjls.2020.007.03.10
Wulandari, D., Baskoro, K., Mahmuudah, Y., Kusmiyati, F., Pratiwi, A., & Budiharjo, A. (2024). Bioprospecting of rhizobia as plant growth promoting rhizobacteria potential from root nodules of groundnut (Arachis hypogaea L.). Trends in Sciences, 21(7), 7651. https://doi.org/10.48048/tis.2024.7651
Yadav, S., & Singh, P. (2023). Isolation and characterization of plant growth promoting rhizobacteria from Raphanus sativus (radish). International Journal of Plant & Soil Science, 35(19), 923–928. https://doi.org/10.9734/ijpss/2023/v35i193626
Yasmeen, T., Arif, M., Tariq, M., Akhtar, S., Syrish, A., Haidar, W., … Ali, S. (2024). Biofilm producing plant growth promoting bacteria in combination with glycine betaine uplift drought stress tolerance of maize plant. Frontiers in Plant Science, 15. https://doi.org/10.3389/fpls.2024.1327552
Zamora-Macorra, E., Ávila-Alistac, N., Lagunes-Fortíz, E., & Santos-Villalobos, S. (2023). Viruses and viroids in tomato (Solanum lycopersicum) and plant growth promoting rhizobacteria as a management alternative. Revista Mexicana De Fitopatología Mexican Journal of Phytopathology, 41(4). https://doi.org/10.18781/r.mex.fit.2023-7
Zahedi, H., & Abbasi, S. (2024). Effect of plant growth promoting rhizobacteria (PGPR) and water stress on phytohormones and polyamines of soybean. Indian Journal of Agricultural Research. https://doi.org/10.18805/ijare.v49i5.5805
Zapata-Sifuentes, G., Hernández-Montiel, L., Sáenz‐Mata, J., Fortis-Hernández, M., Blanco-Contreras, E., Chiquito-Contreras, R., … Preciado-Rangel, P. (2022). Plant growth-promoting rhizobacteria improve growth and fruit quality of cucumber under greenhouse conditions. Plants.








