Respon Fisiologis Beberapa Varietas Padi Lokal Gorontalo terhadap Cekaman Kekeringan yang Disimulasikan dengan PEG-6000 pada Fase Perkecambahan
Abstract
Penelitian ini bertujuan untuk mengetahui respon fisiologis beberapa genotipe padi lokal Gorontalo terhadap cekaman kekeringan yang disimulasikan menggunakan larutan Polyethylene Glycol (PEG-6000) pada fase perkecambahan. Penelitian dilaksanakan di laboratorium dengan rancangan acak lengkap (RAL) faktorial, terdiri atas dua faktor, yaitu genotipe padi (Temo, Maraya, Pulo Kuku, Pulo Merah, Sonu, Ponda, dan Sina) serta konsentrasi PEG-6000 (0, 12,5, dan 25 g L⁻¹), masing-masing diulang tiga kali. Parameter yang diamati meliputi daya kecambah, laju perkecambahan, indeks kecepatan perkecambahan, indeks vigor, panjang plumula, panjang akar, dan indeks sensitivitas stres (SSI). Hasil penelitian menunjukkan bahwa peningkatan konsentrasi PEG berpengaruh nyata terhadap seluruh parameter pertumbuhan awal benih. Penurunan potensial air akibat PEG menghambat proses imbibisi dan aktivitas metabolik benih, sehingga menurunkan daya kecambah dan vigor. Respons antar genotipe bervariasi, yang mencerminkan perbedaan kemampuan adaptasi fisiologis terhadap cekaman osmotik. Berdasarkan nilai SSI, genotipe Maraya dan Ponda dikategorikan sebagai toleran terhadap kekeringan, Pulo Kuku tergolong sedang, sedangkan Temo, Sonu, Pulo Merah, dan Sina termasuk sensitif. Hasil ini menunjukkan adanya keragaman genetik yang potensial untuk digunakan sebagai bahan dasar dalam program pemuliaan padi lokal toleran kekeringan di wilayah Gorontalo.
References
Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., ... & Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific reports, 8(1), 4615.
Bewley, J. D., & Black, M. (1994). Seeds: Physiology of Development and Germination (2nd ed.). Plenum Press.
Bhandari, U., Gajurel, A., Khadka, B., Thapa, I., Chand, I., Bhatta, D., ... & Shrestha, J. (2023). Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review. Heliyon, 9(3).
BPS Gorontalo. (2025). Luas panen dan produksi padi di Provinsi Gorontalo tahun 2024. BPS Provinsi Gorontalo.
Blum, A. (2011). Plant Breeding for Water-Limited Environments. Springer.
Cabello, J. V., Lodeyro, A. F., & Zurbriggen, M. D. (2014). Novel perspectives for the engineering of abiotic stress tolerance in plants. Current Opinion in Biotechnology, 26, 62-70.
Chutia, J., Borah, S. P. (2012). Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of Assam, India II. Protein and prolin status in seedlings under PEG induced water stress. American Journal of Plant Sciences. 3: 971-980.
Copeland, L.O., & McDonald, M.B. (2001). Principles of Seed Science and Technology (4th ed.). Springer.
FAO. (2023). The State of Food Security and Nutrition in the World 2021. FAO, Rome.
Farooq, M., Wahid, A., & Siddique, K.H.M. (2019). Seed priming improves drought tolerance in wheat by modulating physiological and biochemical changes. Acta Physiologiae Plantarum, 41, 1–14.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development. 29, 185–212.
Hampton, J.G., and D.M. TeKrony. (1995). Handbook of Vigor Test Methods. The international Seed Testing Association. Zurikh.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report.
Kementan. (2023). Statistik Lahan Pertanian 2023. Kementerian Pertanian RI, Jakarta.
Kylyshbayeva, G., Bishimbayeva, N., Jatayev, S., Eliby, S., & Shavrukov, Y. (2024). Polyethylene Glycol (PEG) Application Triggers Plant Dehydration but Does Not Accurately Simulate Drought. Plants, 14(1), 92. https://doi.org/10.3390/plants14010092.
Maisura. (2016). Penggunaan Polyethylene Glycol untuk Mengevaluasi Tanaman Padi pada Fase Vegetatif terhadap Cekaman Kekeringan. Seminar Nasional BKS PTN Wilayah Barat Bidang Ilmu Pertanian 2016, 5-6 Agustus 2016, Fakultas Pertanian UNIMAL.
Megasari, R., Darmawan, M., Rasyid, A., & Faried, M. (2025). Identification of drought stress tolerance of several local Indonesian rice (Oryza sativa L.) varieties from Gorontalo at various concentrations of polyethylene glycol (PEG). Aust J Crop Sci. 19(06):633-639
Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51, 914–916.
Nazar, R., Umar, S., Khan, N. A., & Sareer, O. (2015). Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. South African Journal of Botany, 98, 84-94.
Nemoto, K., Morita, S., & Baba, T. (1995). Shoot and root development in rice related to the phyllochron. Crop Science, 35(1), 24-29.
Purbajanti, E. D., Kusmiyati, F., Fuskhah, E., Rosyida, R., Adinurani, P. G., & Vincēviča-Gaile, Z. (2019, June). Selection for drought-resistant rice (Oryza sativa L.) using polyethylene glycol. In IOP Conference Series: Earth and Environmental Science (Vol. 293, No. 1, p. 012014). IOP Publishing.
Sidari, M., Mallamaci, C., & Muscolo, A. (2008). Drought, salinity and heat differently affect seed germination of Pinus pinea. Journal of forest research, 13(5), 326-330.
Siddique, F., Ahmed, M. S., Javaid, R. A., Hanif, A., Rabnawaz, M., Arshad, M., & Majeed, I. R. A. (2023). Screening of elite coarse rice lines for drought stress simulated by polyethylene glycol (PEG) at seedling stage. Pakistan J. Agric. Res, 36, 71-79.
Verslues, P. E., Agarwal, M., Katiyar‐Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal, 45(4), 523-539.








